Search results for "Inverse scattering transform"

showing 4 items of 4 documents

A Method of Conversion of some Coefficient Inverse Parabolic Problems to a Unified Type of Integral-Differential Equation

2011

Coefficient inverse problems are reformulated to a unified integral differential equation. The presented method of conversion of the considered inverse problems to a unified Volterra integral-differential equation gives an opportunity to distribute the acquired results also to analogous inverse problems for non-linear parabolic equations of different types.

symbols.namesakeInverse scattering transformDifferential equationMathematical analysisInverse scattering problemGeneral EngineeringsymbolsInverseInverse problemIntegral equationVolterra integral equationParabolic partial differential equationMathematicsAdvanced Materials Research
researchProduct

A Study of the Direct Spectral Transform for the Defocusing Davey‐Stewartson II Equation the Semiclassical Limit

2019

International audience; The defocusing Davey-Stewartson II equation has been shown in numerical experiments to exhibit behavior in the semiclassical limit that qualitatively resembles that of its one-dimensional reduction, the defocusing nonlinear Schrodinger equation, namely the generation from smooth initial data of regular rapid oscillations occupying domains of space-time that become well-defined in the limit. As a first step to studying this problem analytically using the inverse scattering transform, we consider the direct spectral transform for the defocusing Davey-Stewartson II equation for smooth initial data in the semiclassical limit. The direct spectral transform involves a sing…

1st-order systemsApplied MathematicsGeneral Mathematics010102 general mathematicsSemiclassical physics01 natural sciencesinverse scattering transform0103 physical sciencesnonlinear schrodinger-equationLimit (mathematics)0101 mathematics[MATH]Mathematics [math]010306 general physicsMathematicsMathematical physicsCommunications on Pure and Applied Mathematics
researchProduct

High precision numerical approach for Davey–Stewartson II type equations for Schwartz class initial data

2020

We present an efficient high-precision numerical approach for Davey–Stewartson (DS) II type equa- tions, treating initial data from the Schwartz class of smooth, rapidly decreasing functions. As with previous approaches, the presented code uses discrete Fourier transforms for the spatial dependence and Driscoll’s composite Runge–Kutta method for the time dependence. Since DS equations are non-local, nonlinear Schrödinger equations with a singular symbol for the non-locality, standard Fourier methods in practice only reach accuracy of the order of 10−6or less for typical examples. This was previously demonstrated for the defocusing integrable case by comparison with a numerical approach for …

semiclassical limitClass (set theory)General MathematicsGeneral Physics and AstronomywaveType (model theory)01 natural sciences010305 fluids & plasmasDavey-Stewartson equationsevolution0103 physical sciencesApplied mathematics[MATH]Mathematics [math]0101 mathematicsMathematicsInverse scattering transform010102 general mathematicsGeneral EngineeringD-bar problemsFourier spectral methodsimulationkadomtsev-petviashviliinverse scattering transformpacketssystemsSolitonsolitonblow-upProceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
researchProduct

A Look at Some Remarkable Mathematical Techniques

1996

The nonlinear equations that we have encountered in the previous chapters can be solved by using mathematical techniques such as the powerful inverse scattering transform (IST) (Gardner et al. 1967) and the remarkable Hirota method (Hirota 1971). Specifically, in addition to the one-soliton solutions, explicit multisoliton solutions representing the interaction of any number of solitons can be constructed. Moreover, in several cases a precise prediction, closely related to experiments, can be made by the IST of the nonlinear response of the physical system, that is, of the number of solitons that can emerge from a finite initial disturbance (Zakharov, 1980. Ablowitz and Segur 1981; Calogero…

PhysicsNonlinear systemNonlinear Sciences::Exactly Solvable and Integrable SystemsDisturbance (geology)Inverse scattering transformContinuous spectrumMathematical analysisPhysical systemStimulate raman scatteringNonlinear Sciences::Pattern Formation and SolitonsComputer Science::Databases
researchProduct